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INTRODUCTION 
          During ripening, partial disassembly of 

the fruit cell wall is largely responsible for 

softening and textural changes (Crookes and 

Grierson, 1983). 

These apparent changes in cell wall during 

ripening, implicate the action of a variety of 

cell wall modifying enzymes, capable of de-

grading specific cell wall components (Huber, 

1983; Rose and Bennett, 1999; Cosgrove, 

2001).  The large changes in cell wall’s pectin 

structure, due to a dramatic increase in their 

degradation; that accompany the ripening of 

many fruit, have been attributed to the action 

of polygalacturonase (Cooper et al., 1998; 

Chun and Huber, 2000; Brummell and Harp-

ster, 2001). However, evidence indicates that 

polygalacturonase (PG) is not the major deter-

minant of fruit softening, although transgenic 

fruit with low PG are slightly firmer, more 

resistant to splitting, mechanical damage and 

pathogen infection (Grierson and Schuch, 

1993; Langley et al., 1994; Wang et al., 

2005). 

          Also, during ripening, pectin methyles-

terase (PME) is responsible for de-

esterification of the highly methyl-esterified 

polygalacturonans (pectin) in the cell wall; 

this makes pectin susceptible to degradation 

by PG (Koch and Nevins, 1989; Carpita and 

Gibeaut, 1993). Although, PME-suppressed 

transgenic fruits did not exhibit altered fruit 

softening during ripening, but pectin frag-

ments extracted from their cell walls showed 

an increase in fragment size, due to reduced 

pectin depolymerization and methyl de -

esterification (Tieman et al., 1992; Hall et al., 

1993).  However, suppression of PME in over

-ripe fruit resulted in reduced loss of tissue 

integrity, therefore PME plays little role in 

ripening but does affect fruit senescence 

(Tieman and Handa, 1994). 

          Softening accompanying ripening 

proved to be significantly reduced in trans-

genic tomato fruit with suppressed β-D-

galactosidase, an enzyme that serves to re-

move pectic galactan side chains and modify 

pectin (Carey et al., 1995; Carrington and 

Pressey, 1996; Smith and Gross, 2000; Smith 

et al., 2002). Moreover, the loss of neutral 

sugars, especially galactose; due to the activ-

ity of β-D-galactosidase is quantitatively the 

largest ripening-associated change in cell wall 

composition in fruit (Gross, 1984). 

          Information about b-D-galactosidases 

could be especially important because, there 
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are now several applications for these en-

zymes in the food industries. The various in-

dustrial uses for b-D-galactosidases include 

removal of lactose from milk and whey 

(Loveland et al., 1994) and removal of plant 

saccharides from fruit beverages (Whitaker 

1990; Brenchley, 1996). 

          β-D-Galactosidases have been purified 

and partially characterized from fruits such as 

tomato (Pressey, 1983; Carey et al., 1995), 

apple (Dick et al., 1990; Ross et al., 1994), 

muskmelon ( Ranwala et al., 1992), coffee 

berries (Golden et al., 1993), avocado (de 

Veau et al., 1993), kiwifruit (Ross et al., 

1993), Persimmon (Kang et al., 1994), mango 

(Ali et al., 1995), Japanese pear (Kitagawa et 

al., 1995) and papaya (Ali et al., 1998). In the 

present paper, we report the partial purifica-

tion and characterization of β-D-galactosidase 

from ripe plantain fruit. 

 

MATERIALS AND METHODS 

Plant material 

           Plantain (Musa paradisiaca L. cv. 

French) was purchased from a local market in 

Papine, St. Andrew, Jamaica. 

Chemicals 

           All reagents were of analytical grade 

and were obtained from Sigma Chemical 

Company, St. Louis, Missouri, USA. 

 

Enzyme extraction   

           The enzyme was extracted from mature 

plantain (fully ripe stage), by the method of 

Golden et al. (1993) with slight modifications. 

One hundred grammes (100g) of plantain pulp 

were homogenized in 100 ml of 0.05 M so-

dium citrate buffer pH 4.5 to produce slurry. 

The slurry was filtered through two layers of 

cheesecloth and centrifuged in a Beckman 

centrifuge (Model J2-21) at 10 000 x g for 10 

min. After centrifugation, the pellet was dis-

carded and the supernatant brought to 40% 

ammonium sulphate saturation (w/v). The su-

pernatant was centrifuged at 20 000 x g for 20 

min. The pellet collected from this step was 

resuspended in a minimum volume of extrac-

tion buffer (20 ml). 

 

Chromatographic separations 

          A column (30 x 3.6 cm) containing 

Sephadex G25-150 was equilibrated with ex-

traction buffer and the sample (20 ml) was 

applied to the column. The column was eluted 

with the same buffer and 24 fractions (5 ml 

each) were collected.  Fractions were assayed 

and those fractions with enzyme activity were 

pooled. The pooled fractions (65 ml) were 

concentrated by dialyzing against extraction 

buffer containing 15% (w/v) polyethylene gly-

col for 48 h. The new volume (8 ml) was as-

sayed for activity and then applied to 

Sephadex G-25M column (30 x 3.6 cm) 

equilibrated with extraction buffer. The col-

umn was eluted with the same buffer until 16 

fractions (2 ml each) were collected. Fractions 

containing enzyme activity were pooled (8 

ml) and used in subsequent studies as the en-

zyme extract. 

          Steps involving chromatographic sepa-

rations were performed at room temperature 

(28 ± 2o C) with no effect on enzyme activity; 

however, dialysis and centrifugation were per-

formed at 4o C. 

 

Enzyme assay 

          Enzyme activity was also assayed for 

by the method of Golden et al. (1993) with 

slight modifications. Assay mixture contain-

ing 1 ml of extraction buffer (pH 4.5), 0.4 ml 

of 4 mM p-nitrophenyl-β-D-

galactopyranoside (PNPG) and 50µl of the 

enzyme extract was incubated at 37o C for 10 

min. After 10 min. of incubation, 1 ml of 0.3 

M Na2CO3 was added and the resulting ab-

sorbance was determined at 405 nm with Ce-

cil CE 9000 series spectrophotometer (Model 

No. CE 9050). 

 

Inhibition studies 

          PNPG at varied concentrations 

(0.146mM to 0.730 mM) were used as sub-

strate, with inhibition concentration fixed at 1 

mM for HgCl2 and 2 mM for galactose. The 

type of inhibition was determined from 

Lineweaver-Burk plots (1/v vs 1/S). 

 

Protein determination 

          This was determined by the method of 

Lowry et al. (1951). 
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Fig. 1: Elution profile of b-D-galactosidase on 

Sephadex G25-150 
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Fig. 2: Elution profile of b-D-galactosidase on Sephadex G-

25M 

Table 1. Purification of β-D-galactosidase from ripe plantain. 

Fraction 

Total 

protein 

(mg) 

Total activity 

(µmole/min) 

Specific 

activity 

(µmole/ 

min/mg 

protein) 

Purification 

Fold 

Recovery 

(%) 

Crude extract   152.8     1.680   0.011      1.0      100 

(NH4)2SO4 pellet        38.6     0.956   0.025      2.27        56.9 

Sephadex G 25-150     25.4     0.650   0.026      2.36        38.7 

Sephadex G-25M     1.92     0.0549   0.029      2.64          3.3 

 

RESULTS AND DISCUSSION 

Enzyme purification 

           Purification of β-D-galactosidase from 

ripe plantain on Sephadex G25- 150 is shown 

in Fig 1. Chromatography of the enzyme ex-

tract on Sephadex G 25-150 after ammonium 

sulphate precipitation yielded a peak of β-D-

galactosidase activity. Fractions 3 through 7 

were pooled and concentrated by dialysis. Fig. 

2 shows the chromatography of the concen-

trated enzyme on Sephadex G-25M. Fractions 

2 and 3 were pooled and used as enzyme ex-

tract, for characterization studies. Ion-

exchange chromatography on cellulose phos-

phate resins and CM-Sephadex resulted in lost 

of activity of β-D-galactosidase. Results of the 

purification of β-D-galactosidase are summa-

rized in table 1. Ammonium sulphate precipi-

tation afforded a reduction in sample volume 

with a purification fold of 2.27. While gel-

filtration chromatography on Sephadex G 25-

150 and G-25M gave a purification fold of 

approximately 3; with a specific activity of 

0.029 µmole/min/mg protein and 3.3% recov-

ery. 

 

Characterization of β-D-galactosidase 

          Characterization of β-D-galactosidase 
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from plantain fruit gave a Km of 1 mM 

(Figure 3) which is quite similar to 2 mM in 

carambola fruit (Balasubramaniam et al., 

2005) and 0.33 mM in coffee berries (Golden 

et al., 1993). The Vmax value is 0.04 µmole/

min/g Fresh weight. 

 

Enzyme inhibition 

          Inhibition studies showed that the en-

zyme was inhibited by galactose (2 mM) and 

mercuric chloride (1 mM) as shown in Fig. 3. 

Galactose was a noncompetitive inhibitor 

(Km, 1 mM; Vmax, 0.02 µmole/min/g Fresh 

weight). While mercuric chloride was an un-

competitive inhibitor (Km app., 0.35 mM; 

Vmax, 7.14 x 10−3 µmole/min/g Fresh 

weight). All these properties are in general, 

similar to those reported for β-D-galactosidase 

from other plant sources (Pressey, 1983; 

Golden et al., 1993; Biles et al., 1997; Li et 

al., 2001).  
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