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INTRODUCTION 

       Scientific interests in the analysis of sec-
ond order differential equations (in particular 
dynamical systems) due to their manifesta-
tions in various physical, biological, geome-
try, fluid dynamics and host of other mathe-
matical sciences cannot be over emphasized. 
It is paramount to note that solutions to many 
of these second order equations are still being 
sort, since in some instances there are no defi-
nite methods for obtaining them and in other 
cases no optimum solutions are seemingly at-
tainable. The work of Lie (1881, 1895) and 
the works of (Ovsiannikov, 1982; Olver, 
1986, 2003; Gorringe and Leach, 1987; 
Stephani, 1989; Bluman and Cole, 1974; Blu-
man and Kumei, 1989; Bluman and Anco, 
2002;  Andriopoulos et al., 2002; Leach and 
Flessas, 2003; Leach and Nucci, 2004;  Leach 
et al., 2003; Arunaye and White, 2007; 
Arunaye, 2009)  in symmetry transformations 
of differential equations, however brought to 
the fore the systematic method of obtaining 
solutions to many simple and complicated 
equations (be it ordinary or partial). In recent 
time nonlocal symmetry analysis is prominent 
in the literature, particularly the fact that there 

exists at least one integrable second order 
equation with no Lie point symmetry but pos-
sesses nonlocal symmetries; consequently in-
tegrability of equations relied on the existence 
of nonlocal symmetries (Arunaye, 2009; 
Leach and Andriopoulos, 2007). 
 
ON THE NATURAL REDUCTION VARI-

ABLES FOR DYNAMICAL SYSTEM 

           Given the dynamical system 

  ,  ;             (1) 

Where  and , it 
was shown by Leach and Flessas (2003) that 
its Laplace-Runge-Lenz vector is 

,        (2) 

where  is vector product,  is the angular 

momentum of motion and ,  unit vec-
tors in direction of motion. 
      The Ermanno-Bernoulli constants with 
which (1) were reduced by Leach and Flessas 
(2003) is as follows: 
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In the consideration of nonlocal symmetries of the dynamical system , it was 
shown by Leach and Flessas (2003), using the Ermanno-Bernoulli reduction process that the radial 
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                                        (3) 

where    ,                                    (4)    

And  .                               (5)   
We note that equation (3) implies 
                       

,         (6) 

where  and equation  (5) im-
plies 
                                     

                  (7) 
which both reduced (1) to the system of equa-
tions 

 ,                                 (8) 
 
ON THE NONLOCAL SYMMETRY OF 

SYSTEM (1) 

        The Lie point symmetry analysis of sys-
tem of equations (8) is well known. While the 
corresponding nonlocal symmetries as pre-
sented by Ref. Leach and Flessas (2003) are 
contentious due to the unfortunate radial re-

duction variable . Thus the equa-
tion (5.7.29) of Leach and Flessas (2003) is 
misleading, and hence the corresponding sym-
metries are not well posed. 
         Considering the Ermanno-Bernoulli con-

stant  ; the following relations are true: 

 

 

.  (9) 

i.e. ,  

     .                        (10) 

 

 

From (10) we have 
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; 

showing that  contrary to known 
variable  of Leach and Flessas (2003), but 

equality holds provided . Fur-
ther, it is clear that (11) implies 

       (12) 

 where is some non trivial function of  

and . Thus  

  ; .                     (13) 
It is now shown that the following are the ap-
propriate natural variables for reducing (1) to 
(8) 

 , 

          (14) 
While the appropriate corresponding nonlocal 
symmetries are obtained as follows: 

A RELATED DYNAMICAL SYSTEM 

      We consider the dynamical system 

,                                   (16) 

where is the angular momentum of motion 

and   since the angular momentum is 
geometrically non-constant (Leach and Fles-
sas, 2003; Andriopoulos et al., 2002 ), that is 

  ,                             (17) 
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the symbol  is vector product .   
The Laplace-Runge-Lenz vector is obtained 
from the relation 

,              (18) 
which is (functionally) 

,             (19) 
Provided 

.        (20) 
Equation (20) produced the following: 

   ,       (i)                        (21)   

.     (ii) 
Equation (i) of (21) implies 

, 

i.e.     ,                    (22) 

    .   (23)  
Equation (ii) of (21) implies 

, 

i.e.  ;  . 

Taking                                 (24) 
 we have 

.                              (25) 

i.e. , 

so,  .    (26)  
Substituting for (22), (24), (25) and (26) in 
(16) we obtain a specific dynamical system 

;      
(27) 
whose conserved vector is 

.         
(28) 
 

RELATED HAMILTONIAN SYSTEM 

         The related Hamiltonian system (Leach 
and Flessas 2003) is given by 
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,          (29) 
from which the Newtonian equation of motion 
is calculated as 

,          (30) 
and in a plane polar coordinates we have 

.      (31) 
So  

,  

.        (32) 
The consistent solution of system (32) places 
considerable constraints on the functions 

 and  to obtain the Hamiltonian 
(Leach and Flessas, 2003; Sen, 1987; Gorringe 
and Leach, 1987). The constraints are 

, 

.          (33) 
SYMMETRY ANALYSIS OF SYSTEM 

(16) 

         We present the nonlocal symmetries of 
the dynamical system (16) as follows. 
The Ermanno-Bernoulli constants 

 
reduced system (16) to system 

,  

; 
where     

 , 

; , 

 and   ,   

. 
We obtain the nonlocal symmetries of (16) as 
follow: 
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, 

, 

,       (34) 

, 

 

. 
        Comparing the nonlocal symmetries of 
dynamical systems (1) and (16) obtained re-
spectively by the use of the  natural reduction 
variables obtained from the Laplace-Runge-
Lenz vectors (2) and (28) we observed that 
systems (1) and (16) are equivalence dynami-
cal systems; that is one is map onto the other 
by a point transformation. 
 
CONCLUSION 

          The importance of Lie symmetry 
method for obtaining the solutions of differen-
tial equations as well as the significance of 
nonlocal symmetries to integrable differential 
equations were referenced in the introductory 
section of this work. In the second part we 
presented the correct natural reduction vari-
ables of system (1), and hence the correspond-
ing nonlocal symmetries. Finally we consider 
a related dynamical system (16) and by the 
use of its natural reduction variable, usually 
from its Ermanno-Bernoulli constants we ob-
tained its nonlocal symmetries which are 
equivalence to those of system (1). 
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