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INTRODUCTION 

 Boosting is a means of improving the 

performance of a ‘weak learner’. Boosting 

does not only guarantee an error rate  that is 

better than random guessing but also deals 

with the correction of ‘noises’ at the tails of 

the distribution or where we have sparse clus-

ter of data within a given region. 

Boosting in kernel density estimation was first 

proposed by Schapire (1990). Other authors 

like Freund (1995), Schapire and Singer 

(1999) but to mention a few have also made 

contributions. It is applied in this context us-

ing the higher-order Gaussian kernel.      

 

  In 2004, Mazio and Taylor proposed 

an algorithm in which a kernel density classi-

fier is boosted by suitably re-weighting the 

data. This weight placed on the kernel estima-

tor, is a ratio of a log function ie  

  

 in which the denominator is a leave-one-out 

estimate of the density function. A theoretical 

explanation is also given by Mazio and Taylor 

(2004) to show how boosting is a bias reduc-

tion technique. That is a reduction in the bias 

term of the expression for the asymptotic 

mean integrated squared error (AMISE) giv-

ing as . See Silver-
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man (1986)  for more details. 

 

METHODS 

    We shall see how the leave-one-out estima-

tor of Mazio and Taylor (2004)  in the weight 

function can be replaced by a bootstrap esti-

mator due to the time complexity involved in 

the leave-one-out estimator. In the leave-one-

out estimator, we require (n+(n-1)).n function 

evaluations of the density for each boosting 

step. Thus, we are using a bootstrap in its 

place. The bootstrap is a resampling scheme 

that estimates the function   I the 

weight function of Mazio and Taylor (2004) . 

The only limitation on this bootstrap algorithm 

is that we must first determine B- the number 

of bootstrap sample which must be large 

(Ishiekwene et al., 2008). The need to use a 

bootstrap in place of the leave-one-out lies on 

the fact that bootstrap is a resampling tech-

nique which finds the required estimates un-

like the leave-one-out with so much function 

evaluation. The bootstrap is a good substitute 

that approximates the leave-one-out estimate 

of the function (Duffy and Helmbold, 2000; 

Ratsch et al., 2000; Mannor et al., 2001: Ha-

zelton and Turlach, 2007). 

The new bootstrap algorithm is stated as:  
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STEP 1: Given { xi 1,2,…n} initialize 

W1(i)  1/n  

STEP 2: Select h(the smoothing parameter) 

STEP 3: For m 1,2,…,M 

Get

exp-  

Update  Wm+1  Wm(i) + Log   

,      where  is the bootstrap esti-

mate of the density at point i. 

STEP 4: Provide output 

               
and normalized to integrate to unity. 

We can see that the weight function uses a 

bootstrap instead of the leave-one-out log ra-

( )xfm

Ù

( )
2

2

itt -

( )

ï
ï
þ

ïï
ý

ü

ï
ï
î

ïï
í

ì Ù

)()(

i

B

m

im

xf

xf

)()(

i

B

m xf

)(
1

xf
m

M

Õ
Ù

tio function of  Mazio and Taylor (2004). The 

kernel function used is the higher-order 

Gaussian kernel unlike the fixed used in Ish-

iekwene et al (2008). The idea of higher-order 

kernels via bias reduction dates back to Parzen 

(1962) and Bartlett (1963). Schucany and 

Summers (1997) also applied the generalized 

jackknife to bias reduction in kernel density 

estimation and showed that it is equivalent to 

using higher-order kernels (Birke, 2009). The 

numerical verification of this algorithm would 

be seen in the  discussion. 

 

DISCUSSION 

In this section, we shall use three sets of data 

to illustrate our algorithm and BASIC pro-

gramming language is used. Table1 is a sam-

ple of size forty and is the lifespan of car bat-

teries in years. Table 2 is a sample of size six-

ty-four and is the number of written words 

without mistakes in every 100 words by a set 

of students in a written essay. Table 3 is the 

scar length of patients randomly selected in 

millimeters (Ishiekwene and Afere, 2001; Ish-

iekwene and Osemwenkhae, 2006). 

 

The results are shown in figures 3.1a – 3.3b. 

Figure 3.1a is the graph for Table 1 showing 

the bias reduction, Figure 3.1b for Table 1 

showing the MISE. Figure 3.2a is the graph 

for Table 2 showing the bias reduction, Figure 

3.2b for Table 2 showing the MISE. Figure 

3.3a is the graph for Table 1 showing the bias 

reduction, Figure 3.3b for Table 3 showing the 

MISE. In all three data sets used in this paper, 

Table 3.1: Showing the various higher-order window widths, bias, variance and MISE 

for three data sets 

m n = 40 n = 64 n = 110 
m

opth  2Biasò dx  Varò dx  
MISE m

opth  2Biasò dx  Varò dx  
MISE m

opth  2Biasò dx  Varò dx  
MISE 

2 0.508056 0.00273569 0.0234243 0.0261542 5.81862 

 

0.00015979 0.00127832 0.00143811 0.233918 

 

0.00231255 0.0185004 0.020813 

4 0.511906 

 

0.00213714 0.0232481 0.0253764 5.8684 

 

0.000105623 0.00126747 0.0013731 0.240328 

 

0.00150058 0.018007 0.0195076 

6 0.523919 
 

0.00141969 0.0227151 0.0241348 6.10333 
 

0.0000761679 0.00121869 0.00129485 0.252412 
 

0.00107156 0.017145 0.0182165 

8 0.540169 

 

0.00110159 0.0220318 0.0231333 6.32586 

 

0.0000587908 0.00117582 0.00123461 0.263207 

 

0.000822088 0.0164418 0.0172639 

10 0.55443 

 

0.000894378 0.0214651 0.0223595 6.51615 

 

0.0000475616 0.00114148 0.00118904 0.272246 

 

0.000662328 0.0158959 0.0165582 

12 0.566618 

 

0.000750119 0.0210033 0.0217535 6.67669 

 

0.0000397868 0.00111403 0.00115382 0.279788 

 

0.000552406 0.0154674 0.0160198 

14 0.577034 

 

0.000644507 0.0206242 0.0212687 6.8128 

 

0.000034118 0.00109178 0.00112589 0.286139 

 

0.000472628 0.0151241 0.0155967 

16 0.585995 

 

0.000564134 0.0203088 0.020873 6.92926 

 

0.0000298174 0.00107343 0.00110324 0.291547 

 

0.00041232 0.0148435 0.0152559 

18 0.593773 

 

0.00050107 0.0200428 0.0205439 7.02994 

 

0.0000264513 0.00105805 0.0010845 0.296206 

 

0.000365252 0.0146101 0.0149753 

20 0.600582 

 

0.000450354 0.0198156 0.0202659 7.1178 

 

0.0000237498 0.00104499 0.00106874 0.30026 

 

0.000327564 0.0144128 0.0147404 
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Table 2 

Fig 3.1b: Graph Showing the MISE for Table 1 

Fig 3.2a: Graph Showing the Bias for Table 2  

Fig 3.2b: Graph Showing the MISE for Table 2 

Fig 3.3a: Graph Showing the Bias for Table 3 

Fig 3.3b: Graph Showing the MISE for Table 3 
Fig 3.1a: Graph Showing the Bias for Table 1 
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we can clearly see the bias reduction which in 

turn translates to a reduction in the MISE. Ta-

ble 3.1 shows the various window widths, bi-

as2,variance and the MISE for all three data 

sets (Ishiekwene and Nwelih, 2011). 

 

CONCLUSION 

We have shown that the higher-order Gaussi-

an kernel can be used in place of the classical 

fixed kernel in boosting kernel density esti-

mates. The charts- figs. 3.1a – 3.3b and table 

3.1 clearly reveals that the higher-order 

Gaussian kernel method does better than the 

classical fixed kernel method in kernel density 

estimation. It is therefore recommended for 

use in place of the classical fixed kernel meth-

od in boosting in KDE having exhibited the 

qualities of bias reduction which translates to 

a reduction in the overall MISE( ie bias2 + 

var).  
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