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INTRODUCTION 
 In modern technology, physical proc-

esses are usually controllable, that is, they de-

pend in some way on our will. Such systems 

often involve non-negligible time delays be-

tween any particular incident in the behaviour 

of the quantities being controlled and the re-

sult of the operation of the controlling system 

due to the incident. Hence processes of this 

kind are described using delay differential 

equations (DDEs). 

 The significance of delay differential 

equations lies on their ability to describe proc-

esses with memory or after-effects. They are 

applicable in various branches of technology, 

economics, biology and medical sciences and 

this has caused mathematicians to study them 

with increasing interest (Gopalsamy,1992; 

Agwo, 1999). In the last two decades, an enor-

mous number of paper articles had been de-

voted to delay differential equations. 

 In recent years, there have been much 

research activities concerning oscillation the-

ory of DDEs. For instance, Elabbasy et al 

(2000) considered the DDE with positive and 

negative coefficients of the form

 
and proved that 
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Are necessary for oscillation of all solutions 

of  Equ. (1.1). Other authors which include 

Ahmed (2003), Agwo (1999), Li (1996) have 

introduced different new techniques to obtain 

both necessary and sufficient conditions for 

the oscillation of solutions of different forms 

of DDEs. 

 In spite of all these efforts, it appears 

that the influence of noise perturbation of Ito 

type on the creation, existence and destruction 

of oscillation in solutions of vector DDEs is 

presently quite little. The first paper on the 

contribution of noise perturbation to oscilla-

tion of feedback processes was written by Ap-

pleby and Buckwar (2005). Other authors in-

clude Appleby and Kelly (2004), Atonuje 

(2010) and some of their references therein. 

 In this paper, we employed the formal-

ism of Appleby and Buckwar (2005) as well 

as a transformation technique by Lisei (2001) 

and certain classical results in the theory of 

[ )( ) [ )
( ) ( )

( )

( )

( ) ( ) ( )

( ) ( )ò ò

ò

ò

¥ +

+

-

-

+

¥=úû
ù

êë
é

-+-=

>>>

+³£

-+³-+³

£¥ÎÂ¥Î

0

:

00:

1:

:

,,0,,,,,:

5

004

03

02

01

t

t

t

t

t

rt

t

dtdssReIntRh

rtQtPtRwhere

tsomeforttfordssRh

ttfordssQh

rttforrtQtPh

rrtCQPh

s

s

s

s

s

ss

ss

NIOSE DRIVEN OSCILLATION OF SOLUTIONS OF STOCHASTIC OPTIMAL PROB-

LEMS WITH A CONTROLLED TIME DELAY TARGET 

 

Atonuje, A. O.  

Department of Mathematics & Computer Science, Delta State University, Abraka. 

 

Email Address: austino412@yahoo.com 

 

ABSTRACT: 

The paper studies how an Ito-type noise perturbation influences the creation, existence and de-

struction of oscillation in solutions of a stochastic optimal time lag control system with a delayed 

target. We establish that if the noise is absent under certain conditions, the system can admit a non-

oscillatory solution. This cannot happen in the presence of noise irrespective of the magnitude of 
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cal delay differential system to justify the effectiveness of our results. 

 

Keywords: Noise perturbation, stochastic delay optimal control system, oscillation,  classical de-

lay differential system, time lag. 

Nigerian Journal of Science and Environment, Vol. 11 (1) (2012) 



    cxlii  

oscillation in DDEs to study the influence of 

Ito type noise perturbation on the oscillation 

in solutions of a stochastic optimal time lag 

control system whose state at time t is given 

by a linear stochastic DDEs 

 

Where  are time lags 

such that  

 are given n x n 

continuous matrix functions, A(t) is a given 

continuous n x l matrix, X(t) is an n-

dimensional vector which describes the state 

of the control system,  is the noise scaling 

parameter and   is a standard one 

dimensional Brownian motion on a complete 

probability space  with a 

natural filtration , u(t) is an n-

dimensional column vector controlling the 

motion of the system. 

 The initial function 

, where G is a complex 

and compact set in an n-dimensional Euclid-

ean space En and , the set of all admis-

sible initial functions. 

 

PRELIMINARY NOTES: 

 By physical limitation of optimal con-

trol system, we assume that X is controlled by 

the n-dimensional vector   

 called control vec-

tors. Let G be a compact region in an n-

dimensional Euclidean space En which has the 

origin as an interior point. Let  

 be a compact interval, 

then the range of all u(t) in G defined for 

 is called admissible 

and we denote by U, the set of all admissible 

control vectors. 

 In a control system X, the allowable or 
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admissible initial functions are re-

stricted and we denote by , the set of all 

admissible initial function 

 is sufficiently large. We shall call 

 an admissible pair or policy. We 

shall often contrast the oscillatory properties 

of the stochastic delay optimal control equa-

tion (1.3) with those of the comparable deter-

ministic delay optimal system 

 

With the same initial function  

 

Definition 1: 

 By solution of the classical DDE (2.1), 

we mean a continuous vector function 

 which satisfies (2.1) as well as the initial con-

dition   for suf-

ficiently large . Also by solution of the 

stochastic delay optimal control system 

(SDOCS) (1.3), we mean an valued 

function 

  
which is a measurable sample continuous 

process satisfying equation (1.3) almost surely 

together with its initial function. It is unique if 

any other solution Y(t) of (1.3) is indistin-

guishable from it. That is, 

 
 

Definition 2: 

Recall that for scalar systems, a non-trivial 

solution x(t) of a classical DDE is said to be 

oscillatory if and only if if has arbitrarily large 

zeros for , that is if there exists a a se-

quence  such that  
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. Otherwise, x(t) is said to be 

non-oscillatory. Gopalsamy (1987) has the 

following for vector systems: 

A real valued differentiable function u defined 

on a half line  is said to be oscillatory 

if there exists a sequence 

 such that 

         

 u is said to be non-oscillatory on  if 

there exists such that  

for 

. We now apply this to (2.1) as follows: 

Definition 3: 

 The solution  

defined on  with differ-

entiable components is said to be oscillatory if 

at least one component of x is oscillatory in 

the sense of definition (2ii). A vector 

 with differentiable compo-

nents is said to be non-oscillatory if x is non-

oscillatory in the sense of definition (2ii). 

We have similar definition for stochastic proc-

esses given in Appleby and Buckwar (2005). 

Definition 4: 

 A non-trivial continuous function 

 is oscillatory if the set 

 
A function which is not oscillatory is called 

non-oscillatory. We now extend the above to 

the solution of equation (1.3) in the following 

intuitive manner: 

 A solution defined on a 

probability space  with continuous 

sample paths is said to be almost surely (a.s) 

oscillatory if there exists 

 such that for all 
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 the path X(.,w) is oscillatory. 

It is well known that oscillation in so-

lutions of delay differential equations is 

caused by the presence of a sufficiently large 

delay Ladas (1979). We proposed to establish 

that under certain conditions, oscillation is 

stimulated by the addition of a multiplicative 

noise perturbation in a previously non-

oscillatory DDE without noise. Our technique 

involves decomposing the solution of the 

SDOCS (1.3) into a conjugation relation with 

the solution of a classical vector DDE of the 

form. 

 

Where . 

Here the Ps depend on the increments of a 

standard Brownian motion and can be ex-

pressed fully in the form 

 
Where 

 almost surely. If the increments are suffi-

ciently large, the Ps, can induce oscillation in 

the solutions of equation (2.2). We shall then 

invoke, on a path-wise basis, some extensive 

existing results in the theory of oscillation of 

delay differential equations (DDEs) which 

apply directly to equation (2.2), that is, for 

each . The following concerning oscil-

latory solutions is a special case of the result 

found in Ladas (1979). 

PROPOSITION 1: 

    Let  be 

continuous such that  

 
Then every solution of the equation 

 
oscillates. 

We also have results concerning non-

oscillation. The following is a special case of 

the result found in Tang and Yu [2000]. It is a 

general comparison theorem in the case when  
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 is 

 
PROPOSITION 2: 

   Assume that there is an r-periodic function 

 If there exists a 

  

 
Then Equation (1.8) has an eventually positive 

solution and hence non-oscillatory. 

 

THE MAIN RESULTS 
       In this section, we use a random station-

ary coordinate change to obtain a conjugation 

relation between the flow of oscillation in so-

lution of the stochastic optimal delay differen-

tial equation and the solution of the random 

non-autonomous delay differential equation. 

This method was first proposed by Lisei 

(2001). We introduce the process  

which satisfies the properties of Lemma 1 be-

low. For each  for each  

 and have the processes 

 and  given by 

 
The following propostion gives the properties 

of the random coordinate change (3.1): 

 

PROPOSITION 3: 

     The stationary coordinate change (3.1) has 

the following properties: 

L1
:   is a continuous   semi 

– martingale  such that for 

        all 
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       a continuous  semi-martingale 

. 

L2: For all 

 

L3:  The processes   and  

are perfectly stationary, that is 

      

 
For details on the properties of the random 

coordinate change, see Lisei (2001). We now 

let 

 be the solution of the SDOCS 

(1.3) and let  be the solution of the 

random vector DDE (2.2). Also consider coor-

dinate change   with properties as 

in Proposition 3. Then the following conjuga-

tion relation holds: 

 
The relation (3.3) expresses the solution X of 

the SDOCE (1.3) as a conjugation of the solu-

tion Z of the random DDE (2.2) and the ran-

dom coordinate change . Hence the 

zeros of the trajectory of  X are made to corre-

spond to the zeros of the sample path of Z by 

equation (3.3). It is now possible to obtain in-

formation directly about the oscillatory behav-

iour of the solution X of the SDOCE. 

 As a result of the fluctuation along the 

paths of stochastic systems it is usually not 

possible to analyze the oscillatory behaviour 

of their solution paths. This is now made pos-

sible by the use of equation (3.3). Figure 1 

below is a sketch of the corresponding zeros 

of the sample paths. 
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     In the main result (Theorem 1 below), we 
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establish that if  satisfies the condition 

of Proposition 1 for  under certain as-

sumptions, then the solution of the SDOCE 

(1.3) is P-almost surely oscillatory. Also using 

the condition of proposition 2, we observe that 

the comparable classical DDE (2.1) can admit 

a non-oscillatory solution due to the absence 

of the white noise. We need the following as-

sumptions and Lemma for the main result: 

ASSUMPTIONS: 

 

 

Then corresponding to each , there is a 

 such that 

              

 
 

LEMMA 1: 

   If   for some i, j 

and x(t) is an eventually positive solution of 

 
 

THEOREM 1: 

   Let  satisfy conditions 

(i) – (iv) of assumptions (3.1). Then for any 
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initial function  the sto-

chastic optimal control equation (1.3) has a p-

almost sure oscillatory solution on the half 

interval  

 

Proof: 

    From the conjugation relation 

 
It follows that for the continuous function X 

to oscillate, the set  

 must satisfy 

 by definition which holds only if 

the set  satisfies 

with a positive probability for 

 

Now define  

which is, a positive continuous function, and 

hence Z satisfies 

 
Assume that there exists a P-almost sure sub-

set  such that 

 

We see that as the  satisfy the condition of 

proposition 1 for , it must be that tra-

jectory Z(.,w ) is oscillatory and by the rela-

tion (3.3), it follows that the  is 

oscillatory for . Hence the solution of 

the SDOCE (1.3) is P-almost surely oscilla-

tory. If not then we employ a technique of as-

suming the existence of a non-oscillatory so-

lution of (2.2) and then derive a contradiction. 

Accordingly, suppose there exists a 

and a solution Z(t) of (2.2) such that  
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Fluctuating Sample path of SDOCE  Fig. 1 

Sample path of classical DDE, smooth with zeros corresponding 

to those of SDOCE, made possible by Eq (3.3) 
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for  , 

then we have that  

and hence . 

   Define  

. Dividing both sides of  (2.2) by Z(t) yields 

 
Integrating both sides of (3.5) from  

, one gets 

 which implies 

 
Define  

 

We observe that  which results in two 

alternatives (i) m is finite (ii) m may be infi-

nite. If  (i) and (ii) lead to contradiction, then 

we are done. Let us take the first case and as-

sume that m is finite, then there exists a se-

quence  such that 

. Equation (3.6) implies 

 
We now take limits of both sides of equation 

(3.8) as  and obtain 

Using the fact that   to-

gether with (3.9) results 

 which contradicts 

the first part of the condition of Proposition 1 

Now assume case (ii), that is  is infinite ,

 we have 
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Integrating both sides of (3.5) from 

 yields 

 
From (3.11), we have 

 

Since . 

Dividing both sides of (3.12) by Z(t) and us-

ing (3.10) and  , we 

have 

 
However, by Lemma 1, 

 
which contradicts (3.13). Also by dividing 

both sides of  (3.11) by , we set 

 
 which in view of  (3.13) and the condition of  

proposition 1 is again a contradiction, that is, 

 is impossible. Hence Z(t) is oscilla-

tory and by (3.3), we have that the solution X 

of the SDOCE (1.3) is P-almost surely oscilla-

tory. 

   We remark that the sufficiently large enough 

increments in the standard Brownian motion 

help to sustain oscillation irrespective of the 

magnitude of the time lags. Oscillation now, 

is the interplay between the time lags and the 

noise. On the other hand, the comparable clas-
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sical DDE (2.1), where the noise is absent can 

have a non-oscillatory solution. This can 

never happen in the presence of the multipli-

cative noise. 
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