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INTRODUCTION 

Physical properties of an incompressible 

boundary layer inviscid flow cannot be over-

emphasized in the theory and applications of 

differential equations due to its numerous ap-

plications in the Industrial, Scientific and En-

gineering sectors. Many authors have done 

excellent works in identifying the importance 

of these physical properties to differential 

equations. Lasota et al. (1991), looked into the 

stability properties of proliferatively coupled 

cell replication models, while the stability re-

sults for the solutions of a certain third order 

nonlinear differential equation was studied by 

Ademola et al. (2008).Stability and ultimate 

boundedness of solutions to certain third-

order differential equations was studied by 

Ademola et al. (2008). Hua-Shu (2011) stud-

ied stability of rotating viscous and inviscid 

flows and his result showed that inviscid flow 

is unstable if the velocity profile has an inflec-

tion point in parallel flows and stable if it has 

no inflection point in parallel flow.The linear 

stability of high-frequency oscillatory flow in 

a channel was studied by Blennerhassett and 

Bassom (2006). With respect to our observa-

tions in relevant literatures, works on the exis-

tence and uniqueness and stability of coupled 

nonlinear ordinary differential equations are 

scares. The purpose of this paper is to study 

the importance of physical properties for solu-

tions of nonlinear differential equations. More 

so, the existence and uniqueness of solu-

tionswould be established and we would use 

Liapunov second method as a tool to achieve 

the desired stability result for the coupled 

nonlinear differential equation. 

 

MATHEMATICAL MODEL 

Let us consider the problem of a laminar 

boundary layer compressible steady flow [1]: 

where the  are the Cartesian coordinates 

with and axes along and normal to 

the surface of the cylinder respectively,  

are the velocity components along and 

axes, is the density,  is the thermal 

conductivity,  is the specific heat at con-
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stant pressure. Using the dimensionless vari-

ables; 

where  is the stream function defined by 

 and ,  and  

are the dimensionless functions dependent on 

. Using (2.5), equations (2.1) – (2.3), sub-

ject to (2.4) is transformed to a system of cou-

pled nonlinear differential equation 

 

 

 

 

 

 

 

subject to 

  2.8 

where prime denotes differentiation with re-

spect to  and  is the temperature func-

tion. Let the thermal conductivity with a 

very small Mach angle , be 

 

  2.9 

inputting (2.9) into (2.7), we have a new 

nonlinear differential equation as 

  2.10 

  2.11 

subject to the condition (2.8). 

 

SOLUTION PROCEDURE 

We want to establish the theorem and condi-

tions for existence and uniqueness of solution, 

and stability of solution by Liapunov second 

method for the coupled nonlinear differential 
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equations (2.10) and (2.11). 

 

THEOREM I 

A function satisfies a Lipschitz condition 

on the interval such that if and  

be continuous function of and for all 

points in some neighbourhood of , then, 

PROOF: Conditions for the existence and 

uniqueness of solution must be established. 

Hence, let 

;such that   3.2 

Then there exist a constant  where 
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satisfying the boundary conditions 

                  3.7 

where  and  are guess until the bound-

ary conditions are satisfied. Equations (3.5) 

and (3.6) can also be written as; 

 3.8 

by equations (3.2), 
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Clearly,  is bounded and there ex-

ists  such that 

and 

. Therefore, 

are Lipchitz continu-

ous. Hence, there exists a unique solution for 

the system of equation. 

 

THEOREM 2 

Suppose  is a stationary point for 

, and the Jacobian matrix  be a 

Liapunov function such that if 

 3.9 

thenthe eigenvalues  is asymptotically sta-

ble when at a very small Mach angle

. Employing Liapunov second theorem, it 

requires that if all eigenvalues  of a Jaco-

bian Matrix  have real parts, then, to an 

arbitrary negative definite quadratic form 

 with , there corresponds a 

positive definite quadratic form  

such that if 
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 3.10 

then,  and , satisfies 

 3.11 

PROOF: Considering the system of differen-

tial equation 

  
    3.12 

with stationary points at , 

we assume four stationary points, say;

 and , such that for a very small 

Mach angle , , we have 

the Jacobian Matrix thus; 

 3.13 

Hence, the eigenvalues of the matrix at the 

four stationary points would be generated de-

pending on the value of . Hence, rewriting 

(3.13),we have 

3.14 

at , the matrix (3.14) becomes 
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For points , the matrix (3.14) is 
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At stationary points , the matrix 

(3.14) is 

 

 

 

 

 

 
(negative definite) 

for points , we have the matrix 

(3.14) as 
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  (positive definite) 

our results shows that for every corresponding 

positive definite eigenvalues, there is a corre-

sponding negative definite eigenvalues, indi-

cating that our Liapunov function is asymp-

totically stable for all values of . 

 

CONCLUSION 

We have been able to establish the conditions 

for the existence and uniqueness of solution 

for equations (2.10) and (2.11) subject to (2.8) 

and it was deduced to be Lipchitz continu-

ous.Also, employing Liapunov function to the 

coupled nonlinear differential equation of 

theinviscid flow, our result showed that the 

function is asymptotically stable and our re-

sults improved on some well-known result in 

the literature. 
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