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INTRODUCTION 

In recent years, there has been a mas-

sive research concerning the numerical ap-

proximation of solution of stochastic partial 

differential equations (SPDEs). For instance, 

Davis and Gains (2000) considered the nu-

merical solution of SPDE driven by a multi-

plicative space-time white noise, using finite 

differences. The authors investigated the ex-

tent to which the order of convergence proved 

by Gyongy (1999) can be improved, and 

found that better approximations are possible 

for the case of additive noise (  = con-

stant) if we wish to estimate space averages of 

the solution rather than point-wise estimates, 

or if we are permitted to generate other func-

tionals of the noise. But for multiplicative 

noise, the authors showed that no such im-

provement is possible. 

In this study therefore, we are inter-

ested in verifying the theoretical error esti-

mate prove by Njoseh and Ayoola (2008) and 

Njoseh (2010 and 2013) to show its effective-

ness. In those works, they studied the stochas-

tic Cahn-Hilliard equation  

where  is a random process that takes 

)(us

)(tu

values in ,  is a bounded domain 

in 

, with a sufficiently smooth 

boundary . ∆ is the Laplacian. W is a 

standard Brownian motion defined on a fil-

tered probability space .  

is a locally lipschitz real function and is a 

smooth positive function in . 

(Detailed definitions of these functions and 

operators can be found in Buckdahn  and Par-

donx (1990).  

Equation (1.1) is a fourth order heat 

equation used to model a complicated phase 

separation and Coarsening phenomena in a 

melted alloy that is quenched to a temperature 

at which only two different concentration 

phases can exist stably. This was developed by 

Cahn and Hilliard in 1958. (For more physical 

background on this equation, see Novich-

Cohen and Segel (1984)). The existence and 

uniqueness of the solution of (1.1) has been a 

subject of study for a long time (Da Prato and 

Zabczyk, 1992; Debussche and Zambotti, 

2006). Finite element approximations of the 

deterministic form  of (1.1) was analyzed in 

the L2-norms in Elliot and Larsson (1992), and 

Cardon-Weber (2000) studied the explicit and 

implicit discretization schemes of (1.1) in di-

mensions . 
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The Stochastic fourth order heat equation driven by a space-time white noise was consid-

ered. Error estimates were verified using finite element solvers as a tool for numerical experiments. 

The proposed solution for the numerical estimate of the strong convergence rate was shown to be 

effective. 
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The Finite Element Analysis 

We present the finite element method 

for equation (1.1). We discretize in time by 

using the backward Euler or implicit Euler 

method. This is obtained by letting  

be the approximation of at time  

and the time derivative is approxi-

mated by . The time discre-

t ized problem is thus to f ind 

, such that  

where  is an approximation of 

at time . We truncated the 

sum of the last term to terms. This is due 

to the fact that if , it is sufficient to 

take  (cf Yan (2003a and b)). 

Discretizing in space, we seek the ap-

proximation in the finite element space  

instead of in . The fully discrete method 

is then to find  such that 

where we already treated . Finally, we 

write (2.2) in matrix form. Since  , 

we can write   in terms of the basis  

1
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 (where   and  

 is the vertices of the triangulations 

and  is the total number of vertices) as 

 

 

 

 

where .  Substituting (2.3) into 

(2.2) and taking  our 

problem can be stated as follows: Find coeffi-

cients  , such that 

for . We let denote the nodal 

values of the initial approximation 

. In matrix, equation  

(2.4) becomes 

 

 

Here is the mass matrix with ele-

ments ,  is the 

stiffness 

matrix with elements , 

,  is 

the 
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vector of unknowns   and the vector  

 contains the elements  

                            

 
3. Finite element discretization in 

Space and Time 

Let  be a family of finite element spaces, 

where  consists of continuous piecewise 

polynomials of degree  1with respect to the 

triangulation  of . We shall also as-

sume that . According to the 

standard finite element method, the semi-

discrete problem of (1.1) is to find 

, such that, 

 

 

with mild solution as 

 

Applying the implicit Euler method, for 

 we 

have for  and  we 

have the fully discrete scheme as 

 

 

and the variation of constants formula for 

 

becomes (Njoseh and Ayoola (2008)) 
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Where   
These  finite element discretization in both 

space and time led to the following theoretical 

error estimates (Njoseh and Ayoola (2008) 

and Njoseh (2010 and 2013)) 

 

Theorem 1: Let  be the spatially semi-

discrete approximate solution of order r and 

with mesh parameter h, and let the initial ap-

proximation be chosen as the - projection 

of the exact initial value u0.  Then if for 

and , for  

we have  

Theorem 2:  Let  be the solution of (1.1) 

and the fully discrete approximate solu-

tion. If , for some 

, then  

 

If  is a Wiener process, we have 

 
 

4. Setup of the Numerical experiments 

The main purpose of the numerical ex-

periment is to examine the convergence rate of 

the numerical method. The numerical experi-

ment is performed on equation (1.1) with the 

f o l l o w i n g  f u n c t i o n s : 

 

where ,  is the  unit 

square .

In the numerical experiment, the strong 

convergence rate in both the spatial and time 
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steps in equation (3.6) is computed. Since the 

true solution to the SPDE (1.1) itself is a ran-

dom process, it is not known explicitly. 

Therefore, the finite element solution com-

puted on a very fine mesh is considered as the 

true solution, and the finite element solutions 

computed on the less finer meshes are com-

pared with this numerically obtained ”true so-

lution” to compute the strong convergence 

rate.  Due to the lengthy run time of the finite 

element solver used, we set the fine mesh as 

 and   respectively. 

 

5.  Analysis of the Strong Convergence 

rate in k and h 

The experimental setup for the strong 

convergence rate  as described in equation 

(3.6). We first compute the  “true solution” 

 on the mesh where  and , 

which we consider as a fine mesh due to the 

lengthy run time of the solver. Then, we fix 

 and compute the approximated solu-

tion  for different time partitions, in par-

ticular, for re-

spectively. Finally, we compute the 

for every time partition.  

Similarly, the strong convergence rate 

in  is obtained from the numerical experi-

ment after computing the ”true solution”  

on the fine mesh, we fix  and com-

pute the approximate solution  on the 

meshes with 

Then, the error is computed in the same way 

as for the time step.  

Applying Theorem 2, the strong con-

vergence rate is almost and , 

respectively. When estimating the conver-

gence rate in , we fix  and do the simula-

tions for different ’s, and vice versa for the 
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Roughly speaking, we have 

 

Thus, fixing  and , respectively, 

 
and 

 
Hence, one can expect to get a graph with 

slope close to  and  on the log-log plot 

from the numerical experiment, respectively 

for the strong convergence rate in  and .  

Another means of computing the con-

vergence rate from the obtained computational 

error data is to show (Bin (2004)) that Theo-

rem 2 implies that the order of strong conver-

gence of our method should be close to 

. If  is sufficiently small, such 

that the error estimates are dominated by , 

the predicted rate of convergence would then 

be . This gives us 

 
and from that we obtain 

 

  In the same way, when  is very 

small, the error is assumed to be dominated by 

 and the rate of convergence should be 

. Similarly to (5.5), we obtain, 

 Therefore, using (5.5) and (5.6), we obtain the 

results for  as shown in table (5.1). 

The table shows that the average of the ’s 

is around the expected value . 
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Table 5.1: Convergence rate in  and  

Hence we can conclude that the pro-

posed finite element solution for the numeri-

cal estimate of the strong convergence rate 

will prove to be effective. 
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